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SO YOU WANT TO START A DE NOVO
GENOME ASSEMBLY PROJECT

Assuming you have a good reason to sequence and assemble a genome.

1. What is the size of the genome?
2. What will be your sequencing “recipe”?
3. Do you have the computational resources?
—i.e. a machine with 32 processors, 512GB RAM

4. Do you have the time? Personnel? Bioinformatics

experience?

Marc Tollis, Ph.D. : De Novo Genome Assembly Using Next Generation Sequence Data, 2016
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GLOSSARY

Assembly : Computational reconstruction of a longer sequence from smaller
sequence reads

De novo Assembly : Refers to the reconstruction of contiguous sequences without
making use of any reference sequence

Contig : A contiguous linear stretch of DNA or RNA consensus sequence.
Constructed from a number of smaller, partially overlapping, sequence fragments
(reads)

Scaffold : Two or more contigs joined together using read-pair information

REVIEWS AND SYNTHESIS

A field guide to whole-genome sequencing, assembly
and annotation
Robert Ekblom and Jochen B. W. Wolf

Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
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DE NOVO SHORT READ ASSEMBLY VS. SHORT READ
MAPPING ASSEMBLY

In sequence assembly, two different types can be distinguished:

de novo assembly

1. reads 2.contigs 3. scaffolds
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PE reads with known distances

Must assemble from scratch

Reference-based assembly

Reference genome
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DE NOVO ASSEMBLY BASIC

2. Assemble reads into contigs

1. Shotgun reads / : \
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3. Order contigs onto a scaffold

\

Use paired-end info to determine { \
order of (and distance between) —ee——— e

contigs —UT S U—

PE reads with known distances

4. (optional) gaps between contigs are filled in by mapping reads back to the scaffolds

ASSEMBLY ALGORITHMS

Overlap-Layout-Consensus (OLC)

Eulerian / de Bruijn Graph (DBG)




“K-MER” CONCEPT

A k-mer is a sub-string of length k
A string of length L has (L - k + 1) k-mers
Sequencing reads must be sub-sampling into k-mers
Example read L=8 has 5 k-mers (8 - 4 + 1) when k=4

AGATCTGA

AGAT

GATC
ATCT
TCTG

CTGA

Modified form “De Novo Genome Assembly of NGS data” pdf by Torsten Seeman
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OVERLAP - LAYOUT - CONSENSUS (OLC)

Overlap

All against all pair-wise comparison

Build graph : nodes=reads, edges=overlaps
Layout

Analyse/simplify/clean the overlap graph

Determine Hamiltonian path (NP-hard)
Consensus

Align reads along assembly path

Call bases using weighted voting

Modified form “De Novo Genome Assembly of NGS data” pdf by Torsten Seeman
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OLC : OVERLAP EXAMPLE

True sequence (7 bp)

AGTCTAT
Reads (3 x 4 bp)
AGTC, GTCT, CTAT
Pairs to align (3)
AGTC + GTCT, AGTC + CTAT, GTCT + CTAT

Best overlaps

AGTC- AGTC--- GTCT--
-GTCT -—-CTAT ——CTAT
(Good) (poor) (ok)

Modified form “De NO\ﬁ Genome Assembly of NGS data” pdf by Torsten Seeman

OLC : OVERLAP GRAPH

Nodes are the 3 read sequences

Edges are the overlap alignment
with orientation
Good Poor

&~

Edge thickness represents score
of overlap

Modified form “De No%g Genome Assembly of NGS data” pdf by Torsten Seeman




OLC : LAYOUT - CONSENSUS

Optimal path shown in green

Un-traversed weak overlap in

red Good
Poor

Consensus is read by
outputting the overlapped

nodes along the path @ @

aGTCTCTat Ok

Modified form “De No%g Genome Assembly of NGS data” pdf by Torsten Seeman

OLC : SOFTWARE

Pharap, CAP3, PCAP

Smaller scale assemblers
Celera Assembler

Sanger-era assembler for large genomes
Arachne, Edena, CABOG, Mira

Modern Sanger/hybrid assemblers
Newbler (gsAssembler)

Used for 454 NGS “long” reads

Can be used for lonTorrent flowgrams too

Modified form “De NO\?‘)1 Genome Assembly of NGS data” pdf by Torsten Seeman




EULERIAN APPROACH

Break all reads (length L) into (L - k + 1) k-mers

L =50, k = 31 gives 20 k-mers per read
Construct a de Bruijn graph (DBG)

Nodes = one for each unique k-mer

Edges = k-1 exact overlap between two nodes
Graph simplification

Merge chains, remove bubbles and tips
Find a Eulerian path through the graph

Linear time algorithm, unlike Hamiltonian

Modified form “De No%g Genome Assembly of NGS data” pdf by Torsten Seeman

DBG : SIMPLE

Sequence (6 bp)
AACCGG

k-mers (k=4)
AACC ACCG CCGG

Graph

A

A 4

ACCG

(ACC) (CCq)

AACC CCGG

Modified form “De NO\?Z Genome Assembly of NGS data” pdf by Torsten Seeman




DBG : REPEATED K-MER

Sequence (7 bp)
AATAATA
k-mers (k=4)
AATA ATAA TAAT AATA (repeat)

Graph

AATA ATAA

: (ATA) (TAR)

TAAT

A

(AAT)

Modified form “De No%g Genome Assembly of NGS data” pdf by Torsten Seeman

DBG : ALTERNATE PATHS

Sequence (7 bp)

CAATATG
k-mers (k=3)

CAA AAT ATA TAT ATG
Graph

CAA - AAT +  ATA + TAT

(AA) (AT) (TR)
(AT)
ATG
(AT)

Modified form “De NO\ﬁ)3 Genome Assembly of NGS data” pdf by Torsten Seeman




DBG : VARIATION IN A DE BRUIJN GRAPH

Variation in sequence produces a bubble in a de Bruijn graph

Sequences
AATCGACAGCCGG
AATCGATAGCCGG
AATCGACAGCCGG
AATCGATAGCCGG

CGAT = GATA = ATAG = TAGC
/

AATC = ATCG = TCGA = CGAC = GACA = ACAG = CAGC = AGCC = GCCG = CCGG

£\

Modified form ”Genom]e?Assembly Using de Bruijn graph” pdf by Biostatistics 666

|||||

DBG : SOFTWARE

Velvet

Fast, relatively easy to use, multi-threaded
AllPaths-LG

Designed for larger genomes, robust
AbySS

Runs on cluster to get around RAM issues, integrates well with
cluster job schedulers

Ray

Designed for MPI/SMP clusters

Modified form “De NO\;% Genome Assembly of NGS data” pdf by Torsten Seeman




BRIEFINGS IN FUNCTIONAL GENOMICS. VOL IIl. NO I. 25-37

doiI0.1093/bfgpelr035

Comparison of the two major
classes of assembly algorithms:
overlap-layout—-consensus and
de-bruijn-graph

Zhenyu Li*, Yanxiang Chen*, Desheng Mu*, Jianying Yuan, Yujian Shi, Hao Zhang, Jun Gan, Nan Li, Xuesong Hu,

Binghang Liu, Bicheng Yang and Wei Fan

Advance Access publication date 19 December 20I1

OLC (Overlap-layout-consensus) algorithm is more
suitable for the low-coverage long reads, whereas the
DBG (De-Bruijn-Graph) algorithm is more suitable for
high-coverage short reads and especially for large
genome assembly

Key Points

o High-quality genome sequences for many species are still strong-
ly desired by the genomics community. With the rapid develop-
ment of seq hnologies and bly algorithms, we
have seen practical improvements and a bright future lies ahead.
There are two major types of assembly algorithms: OLC and
DBG; both of them are in accordance with Lander—Waterman
model, but suit the assembly of different read lengths and
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ing depths, and have significant differences in computa-
tional efficiency.
How well a genome can be assembled depends not only on
sequencing technologies such as read length and sequencing
error rate, but also on the characteristics of the genome, includ-
ing repeat and the heterozygosity rate of the sequenced sample.

GENERAL STEPS IN A GENOME ASSEMBLY WORKFLOW

FASTQ

How many reads are available?
Do they represent the genome?
Are there adapters present?

QC report

Erroneous sequences and
adapters are removed
[If required before assembly]

FASTQ

\ £

Clean reads

Quality

o Control
-
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DAV Dominguez, et al., “Ten steps to get started in Genome Assembly and Annotation”, F1000Res. 2018 Feb 5;7
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ASSEMBLER SOFTWARE

Presented

/

Technologies 4 | Author 2 Licence* &
Last

updated

Name

*

Type

<@
*»

AFEAP cloning Lasergene | a precise and efficient method for large | two rounds of PCRs followed by ligation of the | AFEAP 2017/2018 | C

Genomics Suite DNA sequence assembly sticky ends of DNA fragments cloning
DNASTAR Lasergene lar enomes, exomes, llumina, ABI SOLiD, Roche 454, lon Torrent,
A ~asergen TR, (s umin : n 1ot DNASTAR | 200772016 | C
Genomics Suite transcriptomes, metagenomes, ESTs Solexa, Sanger
Newbler genomes, ESTs 454, Sanger 454/Roche | 2004/2012 C
Phrap genomes Sanger, 454, Solexa Green, P. 1994 /2008 ' C/NC-A
lllumina, Solexa, Sanger, 454, lon Torrent, Bankevich,
SPAdes (small) genomes, single-cell i hEh Sl Ve o012/2017 | OS
PacBio, Oxford Nanopore Aetal.
Zerbino, D.
Velvet (small) genomes Sanger, 454, Solexa, SOLID t I'" 2007/2011 | OS
etal.
Chin et
HGAP& Small genomes PacBio reads al [Is? € 2011/2015 | OS
Chin et
Falcong Diploid genomes PacBio reads al [I7] 2014/2017 | OS
Small and large, haploid/diploid Koren et
Canug@ 98 RapOCCIpe! PacBio/Oxford Nanopore reads A 2001/2018 | OS
genomes allel
lllumina and PacBio/Oxford Nanopore data, Zimin A, et
MaSuRCA® Any size, haploid/diploid genomes P 2011/2018 | OS
legacy 454 and Sanger data al
. . ; . Kamath et
Hinge? Small microbial genomes PacBio/Oxford Nanopore reads a1 2016/2018 | OS

*Licences: OS = Open Source; C = Commercial; C / NC-A = Commercial but free for non-commercial and academics

https://en.wikipedia.org/wiki/Sequence_assembly
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VELVET: USING DE BRUIJN GRAPHS FOR DENOVO SHORT READ ASSEMBLY

Resource

Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs

Daniel R. Zerbino and Ewan Birney’
EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 15D, United Kingdom

We have developed a new set of algorithms, collectively called “Velvet,” to manipulate de Bruijn graphs for genomic
sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for
high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends
information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of
prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read
pairs, Velvet generated contigs of ~8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our
simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage
very short reads in combination with read pairs to produce useful assemblies.

[Supplemental material is available online at www.genome.org. The code for Velvet is freely available, under the

GNU Public License, at http:/ /www.ebi.ac.uk/~zerbino/ velvet.] FS ST
SEFE
LS
ACCA
S5 SESE i
FLF SELE éﬁﬁﬁﬁ
S
CTG ATTG FEL3
YLD LDYD &8
&
00 P &€
& S, &
55 @%f?ﬁ ce
***Velvet needs about 20-25x coverage and paired reads Iy
RF
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VELVETOPTIMISER 3 Lo

“ee,, Consortium

VelvetOptimiser is a multi-threaded Perl script for automatically optimising
the three primary parameter options (K, -exp_cov, -cov_cutoff) for the
Velvet de novo sequence assembler.

* http://www.vicbioinformatics.com/software.velvetoptimiser.shtml

+ Dependencies

Velvet => 1.1

Perl => 5.8.8

BioPerl => 1.4

GNU utilities : grep sed free cut
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SPADES

Journal of Computational Biology, Vol. 19, No. 5 | Original Articles

SPAdes: A New Genome Assembly Algorithm
and Its Applications to Single-Cell Sequencing

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, Alexander S. Kulikov, Valery M. Lesin,
Sergey |. Nikolenko, Son Pham, Andrey D. Prjibelski, Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler,
Max A. Alekseyev =], and Pavel A. Pevzner

Published Online: 7 May 2012 | https://doi.org/10.1089/cmb.2012.0021

¥ View Article /& Tools < Share

Abstract

The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using
existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-
genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform
read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler
for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC
assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data).
SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly
exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online
(http://bioinf.spbau.ru/spades). It is distributed as open source software.
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SPADES

Table 1. Assemblies of B. cereus (download contigs, scaffolds)

ABYSS CABOG MaSuRCA

Contigs Num 115 78 90
N50 (kb) 130.6 155.4 246.7

Errors 2 5 9

Errors-L 25 6 11

N50Corr (kb) 130.6 150.5 246.7

GenFrac (%) 98.6 99.3 99.2

Unaligned 1 ] o

Duplication 1.0 1.0 1.0

Scaffolds Num 74 33 61
N50 (kb) 135.6 431.5 3379

Errors 3 9 12

Errors-L 29 13 13

N50Corr (kb) 135.3 364.2 337.9

GenFrac (%) 98.4 99.3 99.2

Unaligned [\] ] o

Duplication 1.0 1.0 1.0
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MIRA SGA SOAPdenovo SPAdes 3.0 Velvet
153 3335 105 53 404
116.5 25.5 246.3 286.8 24.5
9 17 o 1 3

14 9 20 10 11
100.0 25.5 246.3 286.8 24.5
99.2 98.9 98.3 98.8 97.8
4 4 1 1 1

1.0 1.1 1.0 1.0 1.0
n/a 341 56 41 78
n/a 25.5 456.6 775.7 247.7
n/a 1 o 2 11
n/a 1 39 11 258
n/a 25.5 456.0 286.8 208.4
n/a 97.6 98.3 98.7 97.7
n/a 1] 1 1] 1
n/a 1.0 1.0 1.0 1.0

MaSuRCA

New hybrid approach

de Bruijn graph + Overlap-based
assembly

Transform large numbers of paired-end
reads into a much smaller number of
longer ‘super-reads’

Assemble combinations of illumine
reads together with longer reads from
454 and Sanger sequencing technology

Maryland Super-Read Celera Assembler

(_____rendl 1;“]_2_______*
€-—-—-—-—---c &% "~~~ -=>

€ - ——— - -

super-read

The MaSuRCA genome assembler @
Aleksey V. Zimin, Guillaume Margais, Daniela Puiu, Michael Roberts, Steven L. Salzberg,
James A. Yorke

Bioinformatics, Volume 29, Issue 21, 1 November 2013, Pages 2669-2677,
https://doi.org/10.1093/bioinformatics/btt476
Published: 29 August 2013  Article history v

HE Split View B PDF ¢¢ Cite A Permissions «$ Share v

Abstract

Motivation: Second-generation sequencing technologies produce high
coverage of the genome by short reads at a low cost, which has prompted
development of new assembly methods. In particular, multiple algorithms
based on de Bruijn graphs have been shown to be effective for the assembly
problem. In this article, we describe a new hybrid approach that has the
computational efficiency of de Bruijn graph methods and the flexibility of
overlap-based assembly strategies, and which allows variable read lengths
while tolerating a significant level of sequencing error. Our method transforms
large numbers of paired-end reads into a much smaller number of longer
‘super-reads’. The use of super-reads allows us to assemble combinations of
Illumina reads of differing lengths together with longer reads from 454 and
Sanger sequencing technologies, making it one of the few assemblers capable of
handling such mixtures. We call our system the Maryland Super-Read Celera
Assembler (abbreviated MaSuRCA and pronounced ‘mazurka’).

Results: We evaluate the performance of MaSuRCA against two of the most
widely used assemblers for Illumina data, Allpaths-LG and SOAPdenovo2, on
two datasets from organisms for which high-quality assemblies are available:
the bacterium Rhodobacter sphaeroides and chromosome 16 of the mouse
genome. We show that MaSuRCA performs on par or better than Allpaths-LG
and significantly better than SOAPdenovo on these data, when evaluated
against the finished sequence. We then show that MaSuRCA can significantly
improve its assemblies when the original data are augmented with long reads.
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A POST-ASSEMBLY GENOME-IMPROVEMENT TOOLKIT

(PAGIT)

| PROTOCOL

A post-assembly genome-improvement toolkit
(PAGIT) to obtain annotated genomes from contigs

Martin T Swain'?, Isheng J Tsai', Samual A Assefa', Chris Newbold"?, Matthew Berriman' & Thomas D Otto’

"Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK. *Institute of Biological, Environmental and Rural Sciences, Aberystwyth University,
Penglais Campus, Aberystwyth, UK. *Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK. Correspondence should be

addressed to T.D.O. (tdo@sanger.ac.uk).

Published online 7 June 2012; doi:10.1038/nprot.2012.068

Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies.

For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish
these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of

a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers
flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes
(if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small
eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli
assembly takes ~24 h: it doubles the average contig size and annotates over 4,300 gene models.

PAGIT WORKFLOW

Initial assembly PAGIT protocols

Assembly sequences

y Scaffold1 Scaffold2 Scaffold3
ContigA  ContigB ContigC _ Contig D Contig E
l ABACAS (ordering and orienting scaffolds)
Reference genome/chromosome  fasta

T T T T T T 1 Steps 8-17
\‘ '\ I’ \ (y } : | Synteny blocks
NN

Contig A Contig B e

» ContigC  ContigD  Contig E (unordered) lllumina paired-end reads

IMAGE (gap closing) l
Contig A Contig B ContigC  Contig D Contig E /
NNNA e
—_—— o —_ —— =—=— "= 1.Reads mapping
v ' =t L‘ L L 2. Local assembly
epetitive contig
L ¢ L ¢ ¢ & 3. Patching gaps Steps 18-24
Contig A Contig B Contig C  Contig D, Contig E
Gap closed Gap remains open\-*\ Contig end extended
ICORN (correction at nucleotide level)
Error
Reference woarcsrmocs Ara @ ramrros T rasscestasc
srcaatcarracs T cCreacearwsc  Read mapping
AToOATGGTIGGA T T o Crocacoaraic
arcaxaria T @ C TeaacaaTarc
Arcaxtaarions T
Updated reference l
arcearcarroaa T 6 G raarros Crosacsaraac Steps 25-32
AtcaatcaTrceA T cCremeserne  R€ad mapping
JRE—— & Craaaceeraac
AtcaaToaTTon T 1 C reecserea
sroaataotreaa T Aramrres Creascaarae More reads are mapped
aaeatress TT6 A rammccCreacearaac  With subsequent iterations
Final reference
arcaatsaTraaa T A tamtros Creascsstasc
l RATT (annotation transfer from reference genome)
 ombl] Gene models on reference sequence
\ T
\ 1 l l 1 P Steps 33-43
i o
L ! |

——— —
Perfectly transferred model Partially l
transferred

——
Untransferred models

Synteny break identified
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CANU

* To specialize in assembling PacBio or Oxford Nanopore sequences

Method

Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation

Sergey Koren,'*® Brian P. Walenz,'> Konstantin Berlin,? Jason R. Miller,?
Nicholas H. Bergman,* and Adam M. Phillippy’

" Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute,
National Institutes of Health, Bethesda, Maryland 20892, USA; 2Invincea Incorporated, Fairfax, Virginia 22030, USA; 3. Craig
Venter Institute, Rockville, Maryland 20850, USA; “National Biodefense Analysis and Countermeasures Center, Frederick,

Maryland 21702, USA

Long-read single-molecule sequencing has revolutionized de novo genome assembly and enabled the automated reconstruc-
tion of reference-quality genomes. However, given the relatively high error rates of such technologies, efficient and accurate
assembly of large repeats and closely related haplotypes remains challenging. We address these issues with Canu, a successor
of Celera Assembler that is specifically designed for noisy single-molecule sequences. Canu introduces support for nano-
pore sequencing, halves depth-of-coverage requirements, and improves assembly continuity while simultaneously reducing
runtime by an order of magnitude on large genomes versus Celera Assembler 8.2. These advances result from new over-
lapping and assembly algorithms, including an adaptive overlapping strategy based on tf-idf weighted MinHash and a sparse
assembly graph construction that avoids collapsing diverged repeats and haplotypes. We demonstrate that Canu can reli-
ably assemble complete microbial genomes and near-complete eukaryotic chromosomes using either Pacific Biosciences
(PacBio) or Oxford Nanopore technologies and achieves a contig NG50 of >21 Mbp on both human and Drosophila mela-
nogaster PacBio data sets. For assembly structures that cannot be linearly represented, Canu provides graph-based assembly
outputs in graphical fragment assembly (GFA) format for analysis or integration with complementary phasing and scaffold-
ing techniques. The combination of such highly resolved assembly graphs with long-range scaffolding information promises

the complete and automated assembly of complex genomes.

30x-60x coverage is the recommended minimum
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Correct

Trim

Assemble

CANU WORKFLOW (CONT)

Build read and|
overlap
databases

-l choose overlaps
Raw Reads —>| _for correction
gkpStore
timate corrected
=] read lengths
I ==

global
scores
read IDs
to correct

* Improve the accuracy of bases
in reads

ovlStore generate corrected corrected
F— read consensus reads

gkpStore

read and|
overlap
databases

split reads

oviStore
output reads

detect errors in readsH

Build read and ’eWTPU‘e O‘zﬂap h
overlap alignment

databases E

ovistore construct contigs
(bogart)
enerate conti
consensus |
generate outputs

tigStore

 Trim reads to the portion with
high-quality sequence

immed
reads

« Order the reads into contigs,

generate consensus sequences
and create graphs of alternate

paths

‘assembly
- graph
read
layouts
contig
sequence
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BEST ASSEMBLY ADVICE

Remember : your goal is to have a genome assembly
Require more than one assembler
In the end you will have many assemblies to choose from
Use a lot of assembly tools for a lot of k values

Large k can better resolve repeats

Comes at coverage cost

The whole process should take a few months

Marc Tollis, Ph.D. : De Novo Genome Assembly Using Next Generation Sequence Data, 2016
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Q&A
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